

As of February 2, 2026. The program is subject to change.

Session	Session code	No.	Paper ID	Title	Corresponding author
Circular economy	A-1	1	PROCIR-D-25-00154	Integrated Framework for Quantifying the Economic and Ecological Impacts of Circular Business Model Innovation	Marcel Fischer
Circular economy	A-1	2	PROCIR-D-25-00188	Multidimensional Circularity Assessment of Product-Service Systems	Max Werrel
Circular economy	A-1	3	PROCIR-D-25-00187	Identification of Social Key Performance Indicators for the Digital Product Passport for Products with Neodymium Magnets	Jennifer Fuchs
Circular economy	A-1	4	PROCIR-D-25-00180	Artificial Intelligence and Circular Economy: An Exploration of the Ecological Infosphere	Adrien Berthelot
Circular economy	A-1	5	PROCIR-D-25-00178	Configurable Agile Digital Product Passports for Circular Businesses	Wouter Sterkens
Circular economy	A-1	6	PROCIR-D-25-00844	Scenario-based circular ecosystem design: A case study of industrial automation in Japan	Nagi Sato
Circular economy	A-2	1	PROCIR-D-25-00775	Extending The Business Model Canvas For Circular Business Models	Enno Lang
Circular economy	A-2	2	PROCIR-D-25-00749	A Regional Circular Production System for Reusable Wall Panels in the Norwegian Wood Industry	QIAOWEN ZHAI
Circular economy	A-2	3	PROCIR-D-25-00519	Reuse of Lithium-Ion Batteries from used Forklift Trucks – A study identifying the possibilities of reuse and potential applications of used lithium-ion batteries and contributing to a more circular economy	Erik Sundin
Circular economy	A-2	4	PROCIR-D-25-00513	Exploring the Consumer Acceptance of Circular Business Models Using LLM-Based Simulation	Yudai Tsurusaki
Circular economy	A-2	5	PROCIR-D-25-00484	Reshaping the electric and electronic equipment sector towards a circular economy: the PiCo2RAEE platform	Marco Marconi
Circular economy	A-2	6	PROCIR-D-25-00415	The Next Neighbor Problem of the Circular Economy – A Life Cycle Theoretic Perspective on Occurrence and Mitigation Strategies	Robert Miehe
Circular economy	A-3	1	PROCIR-D-25-00404	Retrofit as a Module Driver: Enabling Circular and Service-Oriented Vehicle Architectures	Bastian Nolte
Circular economy	A-3	2	PROCIR-D-25-00331	Design and Evaluation of Circular Economy Business for Elevators Based on Scenario Analysis	Shunji Yamada
Circular economy	A-3	3	PROCIR-D-25-00273	Exploring Circular Business Models in Remanufacturing Services: A Case Study from the Metalworking Industry	Mohamed Elnourani Elhag Abdelmaged
Circular economy	A-3	4	PROCIR-D-25-00257	Identifying Cost Drivers in Circular Business Model Planning: Insights from an Explorative Interview Study	Anja Rasor
Circular economy	A-3	5	PROCIR-D-25-00254	Capabilities for Implementing R-Strategies: A Basis for Process Allocation in Circular Value Networks	Lisa Petzke
Circular economy	A-3	6	PROCIR-D-25-00889	Why let them go? Understanding characteristics of cast-off clothing through wardrobe decluttering and their circularity potential	Eri Amasawa
Circular economy	A-4	1	PROCIR-D-25-00729	The fellowship of the circle: Barriers to establishing partnerships for circular value creation	Julia Marie Vehmeyer
Circular economy	A-4	2	PROCIR-D-25-00875	Unlocking Circularity Potentials from LMT Batteries: A Material Flow Analysis and Scenario Forecast on Secondary Raw Materials for Europe	Franziska Maisel
Circular economy	A-4	3	PROCIR-D-25-00193	Material Flow Analysis of End-of-Life Vehicles and Contributions of AATF Policy toward a Circular Economy in Malaysia	Yuna Seo
Circular economy	A-4	4	PROCIR-D-25-00852	A planning support system for non-experts in woody biomass combined heat and power business	Yuta Yamaguchi
Circular economy	A-4	5	PROCIR-D-25-00899	Bridging the Repair Gap: Evaluating Two Scalable Adaptations of the Repair Café Model	Alex Bunodiere
Circular economy	A-4	6	PROCIR-D-25-00898	Repair or Replace? A Market-Based Analysis of Household Appliance Repair Viability in France and Belgium	Alex Bunodiere
Circular economy	A-5	1	PROCIR-D-25-00269	Enabling cost-optimal product adaptation planning in Product Service-Systems	Tobias Lachnit
Circular economy	A-5	2	PROCIR-D-25-00710	Optimal Revenue Sharing for Circular Subscription Services in Dual-Channel Supply Chains	Koji Kimita
Circular economy	A-5	3	PROCIR-D-25-00239	Novel methodology to increase transparency for recycling-oriented design decisions by Statistical Entropy Analysis	Sönke Hansen
Circular economy	A-5	4	PROCIR-D-25-00233	Evaluating eco-labels as life cycle engineering tools for the European railway sector	Célia Marie Ramany Cannappah
Circular economy	A-5	5	PROCIR-D-25-00216	Eco-ideation process for environmentally-driven research projects and road-mapping in an RTO	Élise Monnier
Circular economy	A-5	6	PROCIR-D-25-00174	Operationalizing EcoDesign: A Comprehensive Review for Integrating Sustainability into Engineering	Jorin Thelemann
Industrial session	A-6	1		Development of a Product Information-Driven Autonomous Disassembly Robot toward a Circular Economy	Gaku Miyake
Industrial session	A-6	2		Arteriovenous Fusion in Manufacturing: Establishing the BlueRebirth Value Chain for Resource Circulation through Precise Dismantling System	Masaomi Dobashi
Industrial session	A-6	3	PROCIR-D-25-01514	Contribution to Circular Economy by advanced home appliance recycling	Katsumi Fujisaki
Industrial session	A-6	4		Development of CMP (Platform for Information on Chemical Substances in Products and Resource Recycling) and Recycling Management Information Platform (RMP)	Kiyoto Furuta
Industrial session	A-6	5		Recycling of casting parts in machine tools	Kotaro Mori
Circular economy	A-7	1	PROCIR-D-25-00843	Deriving product-specific remanufacturing design guidelines based on product information and lifecycle scenarios	Junzhe Xu
Circular economy	A-7	2	PROCIR-D-25-00831	A New Framework for Enhanced Circular Product Development with Total Life Cycle Considerations	Gisele Bortolaz Guedes
Circular economy	A-7	3	PROCIR-D-25-00786	Advancing Sustainable Production Process Planning for Material Extrusion Processes	Jan Oliver Osterod
Circular economy	A-7	4	PROCIR-D-25-00782	Advancing Circular Economy with Additively Manufactured Heat Exchanging Structures for Electric Propulsion Cooling	Akilan Mathiazagan
Circular economy	A-7	5	PROCIR-D-25-00738	Early-Design for Circularity in Electrical and Electronic Equipment: A review of Gaps and Opportunities in Creative and Ergonomic Early Design Methods	Hidalgo Crespo José
Circular economy	A-7	6	PROCIR-D-25-00716	Integrating MaaS and Ex-Ante LCA for Smart and Sustainable Production	Francesco Caraceni
Maintenance	A-8	1	PROCIR-D-25-00243	Maintenance strategy planning methods for product lifecycle management	Toshiaki Kono
Maintenance	A-8	2	PROCIR-D-25-00752	Sustainable fatigue characterization of metals: Hysteresis-Life – a universal short-time test method for resource-efficient life assessment	Selim Mrzljak
Maintenance	A-8	3	PROCIR-D-25-00713	How to detect Inconspicuous anomalies in manufacturing using anomaly detection?	Shradha Ghansiyal
Maintenance	A-8	4	PROCIR-D-25-00568	Predictive Maintenance for Life Cycle Engineering Using I4.0 Technologies in MRO Data Systems	Marco Weiss-Ing. rer. pol.
Circular economy	A-9	1	PROCIR-D-25-00715	Digital Tools for Steering Sustainable Manufacturing: Insights from the E2Comation Project	Matteo Cordara
Circular economy	A-9	2	PROCIR-D-25-00709	Lifetime Heterogeneity – Metrics and Framework for Data-driven Assessment in Early Design Stages	David Inkermann
Circular economy	A-9	3	PROCIR-D-25-00705	Systematic and Data-Driven Selection Process for the Integration of Carbon Capture and Storage Technologies into Product Development	Daniele Jung
Circular economy	A-9	4	PROCIR-D-25-00704	Integration of MBSE and LCA Methodologies in Early Design Stages	David Inkermann

Circular economy	A-9	5	PROCIR-D-25-00505	Development of a Decision Tool for Assessing the Circularity of Electric Traction Motors	Nicolaus Klein
Circular economy	A-9	6	PROCIR-D-25-00319	Stepwise procedure for efficient characterization of retired batteries towards second-life applications	Niraj Chauhan
Circular economy	A-10	1	PROCIR-D-25-00385	Into the Unknown: Synthetic Confidence Intervals for Sustainability Trade-Off Analysis in Early Product Development	Fabian Romano Rusch
Circular economy	A-10	2	PROCIR-D-25-00354	Eco-SCAMPER: A Sustainable Product Design Toolkit	Pingfei Jiang
Circular economy	A-10	3	PROCIR-D-25-00340	Uncertainty-aware Eco design: Integration of fuzzy-logic into Life Cycle Assessment to improve sustainable product development	Amélie Pötzke
Circular economy	A-10	4	PROCIR-D-25-00339	Decision-making under uncertainty: A methodology for the future-proof design of energy systems	Kilian Dicke
Circular economy	A-10	5	PROCIR-D-25-00275	Integrating Sustainability in Early Product Development: A Model-Based Approach Considering Data Quality	Niklas Quernheim
Sustainable Manufacturing	B-1	1	PROCIR-D-25-00164	Digital Twin for Energy-Flexible Production: Pre-Evaluation Framework and Case Study	Julian David Perwitz
Sustainable Manufacturing	B-1	2	PROCIR-D-25-00225	Automation Readiness Index for Disassembly of Electronic Devices	Michaela Hlatky
Sustainable Manufacturing	B-1	3	PROCIR-D-25-00218	Machine Learning Based Automated Industrial-Grade Hospital Waste Segregation Cyber-Physical System for Sustainable Healthcare	Dev Kunwar Singh Chauhan
Sustainable Manufacturing	B-1	4	PROCIR-D-25-00214	Data lakehouse for enabling Digital Product Passport orchestration	Fredrik Hellman
Sustainable Manufacturing	B-1	5	PROCIR-D-25-00211	Designing a System Architecture for Automated Product Carbon Footprint Calculation in Production Lines	Steffen Wurm
Sustainable Manufacturing	B-1	6	PROCIR-D-25-00173	Rehearsal-Based Continual Learning for Very Short-Term Load Forecasting: A Case Study on Parts Cleaning and Drying	Robin Zink
Sustainable Manufacturing	B-2	1	PROCIR-D-25-00941	Digital Twins for Decentralized Infrared Heating Systems in the Industrial Metaverse	Boris Brandherm
Sustainable Manufacturing	B-2	2	PROCIR-D-25-00896	Cognitive AI Agents in Life Cycle Management of Industry 5.0 Organizations: A Conceptual Framework	Lennart Kuhr
Sustainable Manufacturing	B-2	3	PROCIR-D-25-00880	Multimodal Modeling of Help-Seeking Intentions in Self-Service Kiosk Interactions toward Just-in-Time Assistance	Zhiyuan Li
Sustainable Manufacturing	B-2	4	PROCIR-D-25-00797	Context-aware Manufacturing Execution Systems Planning for Turbulent Manufacturing Situations	Günter Bitsch
Sustainable Manufacturing	B-2	5	PROCIR-D-25-00754	Design Principles and Process Model for Planning Data Analytics in Product Management	Khoren Grigoryan
Sustainable Manufacturing	B-2	6	PROCIR-D-25-00150	Thermal effects of CO2 snow jet cleaning on PCB functionality and its role in sustainable electronics refurbishment	Philipp Burgdorf
Sustainable Manufacturing	B-3	1	PROCIR-D-25-00751	Soft sensor for energy efficient parts drying based on grey-box modeling	Jonathan Magin
Sustainable Manufacturing	B-3	2	PROCIR-D-25-00720	Circular Data: A Hybrid Intelligence Framework for Data-Driven Disassembly and Repair in the Circular Economy	Doris Aschenbrenner
Sustainable Manufacturing	B-3	3	PROCIR-D-25-00718	Design and implementation of a data space application architecture for sovereign engineering collaboration	Martin Schellander
Sustainable Manufacturing	B-3	4	PROCIR-D-25-00563	Digital thread complexity and key requirements for circularity	Alex Kim Nordholm
Sustainable Manufacturing	B-3	5	PROCIR-D-25-00561	A Fine-Grained Carbon Emission Accounting Framework for Manufacturing Systems through Model and Data Integration	Tao Peng
Sustainable Manufacturing	B-3	6	PROCIR-D-25-00446	Metadata Model for Engineering of Sustainable Products in Value Creation Networks	Sven Rabach
Sustainable Manufacturing	B-4	1	PROCIR-D-25-00383	Enabling product Life Cycle Assessments in the manufacturing industry through practical methods in the collection of production data	Mertin Pohler
Sustainable Manufacturing	B-4	2	PROCIR-D-25-00379	Towards Data-Driven End-of-Life Management: Identifying Data Requirements and Availabilities in the Wind Energy Sector	Stefanie Eist
Sustainable Manufacturing	B-4	3	PROCIR-D-25-00317	Harmonizing product carbon footprint methodologies for a digital platform: Comparative analysis and recommendations for guideline development in the railway industry	Sebastian Weise
Sustainable Manufacturing	B-4	4	PROCIR-D-25-00308	A Conceptualized Digital Twin Framework for Energy-Efficient Control in Stochastic Manufacturing Using Deep Reinforcement Learning	Chao Liu
Sustainable Manufacturing	B-4	5	PROCIR-D-25-00246	Data Management: Science and Industry in Harmony? Challenges of data consistency in both domains	Max Leo Wawer
Sustainable Manufacturing	B-4	6	PROCIR-D-25-00447	Dry Ice Micro Pellet Blasting for sustainable Cleaning of Tungsten Carbide Cutting Tools before PVD Coating	Waldemar Reder
Sustainable Manufacturing	B-5	1	PROCIR-D-25-00256	The role of surface coatings in recyclability of plastic products	Mareike Tilenda
Sustainable Manufacturing	B-5	2	PROCIR-D-25-00810	Few-shot-learning-based Sequence-to-Point Convolution Neural Network for Energy Data Disaggregation in Industrial Non-intrusive Loading Monitoring	Pengfei Du
Sustainable Manufacturing	B-5	3	PROCIR-D-25-00155	Two visions - one mission: Uniting the Frameworks of Positive Impact Products & Positive Impact Factories	Simon Mörsdorf-Ing.
Sustainable Manufacturing	B-5	4	PROCIR-D-25-00237	Technical suitability assessment of manufacturing system components for hydrogen-based high-temperature processes	Markus Woerde
Sustainable Manufacturing	B-5	5	PROCIR-D-25-00221	Data-driven peak load analysis for flexible energy management in industrial manufacturing: A case study at a heavy vehicle production site	Thomas Schmitt
Sustainable Manufacturing	B-5	6	PROCIR-D-25-00213	Balancing Linked Disassembly Systems: Challenges And Potentials Of Divergent Disassembly Depth	Maik Nübel
Sustainable Manufacturing	B-6	1	PROCIR-D-25-00872	Integrated assessment of sustainability and resilience in the context of production and supply network analysis	Alexander Barke
Sustainable Manufacturing	B-6	2	PROCIR-D-25-00798	Towards Sustainable Laser-Based Manufacturing: A Physics-Informed Machine Learning Approach to Keyhole Welding	SAMUELE PIANDORO
Sustainable Manufacturing	B-6	3	PROCIR-D-25-00794	An integrative approach for implementing needs-based process operation in parts drying to increase resource efficiency	Jonathan Magin
Sustainable Manufacturing	B-6	4	PROCIR-D-25-00755	Multi-objective Anomaly-driven Reinforcement Learning for Sustainable In-situ Process Optimization in Directed Energy Deposition	Maik Schürmann
Sustainable Manufacturing	B-6	5	PROCIR-D-25-00743	Time-Series Modelling for Energy Consumption Prediction in CNC Milling with Regenerative Drives	Anna-Maria Schmitt
Sustainable Manufacturing	B-6	6	PROCIR-D-25-00732	Energy Consumption Forecasting Method for Sustainable Process Planning in End Milling Operations	Haruhiko Suwa
Sustainable Manufacturing	B-7	1	PROCIR-D-25-00726	Regenerative transition of production systems: A longitudinal study investigating regenerative manufacturing attributes	Sandra Naomi Morioka
Sustainable Manufacturing	B-7	2	PROCIR-D-25-00617	Sustainability objectives in strategic asset management plans: qualitative analysis	Caritheia Richards
Sustainable Manufacturing	B-7	3	PROCIR-D-25-00499	Simulation-based prediction of electrical power consumption in machining processes	Alexander Böttcher
Sustainable Manufacturing	B-7	4	PROCIR-D-25-00496	Framework for the AI-supported Design of Sustainable and Resilient Supply Chains	Raphael Ginster
Sustainable Manufacturing	B-7	5	PROCIR-D-25-00464	Does Resilience Equate to Sustainability: Analyzing the Impacts of Machine Disruptions on an SMT Production Line	Devarajan Ramanujan
Sustainable Manufacturing	B-7	6	PROCIR-D-25-00432	Evaluating and comparing the environmental performance of manufacturing processes considering design for additive manufacturing: a case study based on WAAM and green sand casting	Antoine Balidas
Sustainable Manufacturing	B-8	1	PROCIR-D-25-00408	Energy- and productivity-related robustness of matrix production systems	Marc Münnich
Sustainable Manufacturing	B-8	2	PROCIR-D-25-00407	Towards Climate-Neutral Factories: Agent-Based Simulation to Decarbonize Factory Systems with Renewable Energy	Christoph Imdahl Habel

Sustainable Manufacturing	B-8	3	PROCIR-D-25-00369	Take-back in supply chain management: Trends, practices, and future perspectives	Elias Ribeiro da Silva
Sustainable Manufacturing	B-8	4	PROCIR-D-25-00327	Navigating Energy Transition Strategies for Companies through a Modular Configurator	Shun Yang
Sustainable Manufacturing	B-9	1	PROCIR-D-25-00322	Intelligent Utilization of Power Profiles: Energy-efficient and Sustainable Plastics Injection Molding Processing Without Sacrificing Part Quality	Stefan Kerkenberg
Sustainable Manufacturing	B-9	2	PROCIR-D-25-00299	Green hydrogen for net-zero manufacturing – A case study for a German metallurgical production site	Florian Scheffler
Sustainable Manufacturing	B-9	3	PROCIR-D-25-00284	E-Strategies for the structured identification of measures for improving energy performance of manufacturing enterprises	Max Juraschek
Sustainable Manufacturing	B-9	4	PROCIR-D-25-00281	Enabling Circular Reverse Logistics: A Digitally Enhanced Decision-Support Framework	Sara SCHEFFER
Sustainable Manufacturing	B-9	5	PROCIR-D-25-00266	Simulation based Configuration Platform for Circular Manufacturing Systems	Jorge Francisco Cabello Oqueña
Life cycle thinking in product and process innovation	B-10	1	PROCIR-D-25-00866	Circular cooling through intelligent systems: stakeholder insights from an institutional building	Alejandro Gallego-Schmid
Life cycle thinking in product and process innovation	B-10	2	PROCIR-D-25-00865	Environmental Impact Assessment of 3D-Printed Tyres Fabricated by Material Extrusion: The Potential of Modular Designs	Manuel Sardinha
Life cycle thinking in product and process innovation	B-10	3	PROCIR-D-25-00136	Towards Sustainable Aerial Systems: Cardboard-Based UAVs for the Circular Economy	Mikihiro Kasahara
Life cycle thinking in product and process innovation	B-10	4	PROCIR-D-25-00502	Magnetic Separation of Hard and Soft Magnetic Granulate Mixtures for the Recycling of Neodymium Magnets	Thorsten Ihne
Life cycle thinking in product and process innovation	B-10	5	PROCIR-D-25-00230	Assessing the influence on the mechanical performance of increased glass fiber length in wet-laid nonwovens to enhance recycled fiber utilization	Fabian Rechsteiner
Life cycle thinking in product and process innovation	B-10	6	PROCIR-D-25-00748	From Quarry Waste to Functional Material: Developing and Evaluating Granite-Filled Polymer Pellets for Additive Manufacturing	Marco Leite
LCA	C-1	1	PROCIR-D-25-00148	Material selection based on life cycle assessment with application to housing design to reduce environmental impact and enhance disaster resilience in the Southwestern US	Camila Catherine de Moraes Cassundé
LCA	C-1	2	PROCIR-D-25-00228	Environmental assessment of ethane and associated NGL products from diverse sources: A process-based life cycle approach	Carolin Meier
LCA	C-1	3	PROCIR-D-25-00197	Life cycle assessment of CNC machining for freeform mirrors	Hanif Auwal Ibrahim
LCA	C-1	4	PROCIR-D-25-00195	Environmental Impact Evaluation of Recycling Ti6Al4V Machining Chips via Combined Sintering and Forging	Pooya Hosseini
LCA	C-1	5	PROCIR-D-25-00158	Utilization of whole algae cells as a lubricant component: Life cycle assessment of new bio-based fluids for sheet metal forming	Oliver Schömig
LCA	C-1	6	PROCIR-D-25-00929	Predicting a Life Cycle Assessment of Laser Powder Bed Fusion: A comparative Commercial Vehicle Case Study	Matthias Duve
LCA	C-2	1	PROCIR-D-25-00904	Life Cycle Assessment of Polypropylene from WEEE: Utilizing the Circular Footprint Formula for Environmental Evaluation	Theresa Aigner
LCA	C-2	2	PROCIR-D-25-00868	Life Cycle Engineering Approach Towards Enhancing the Sustainability of Porcelain Products: Comparison Between Porcelain and Bone China Manufacturing processes	Madhurika Geeethani
LCA	C-2	3	PROCIR-D-25-00867	Evaluating the Sustainability of Repurposing as a Circular Strategy for Conveyor Belts	Alejandro Gallego-Schmid
LCA	C-2	4	PROCIR-D-25-00860	Biointelligent production of red gold: an environmental assessment	Ana Maria Pinzon Piedrahita
LCA	C-2	5	PROCIR-D-25-00840	Life cycle assessment of the environmental load induced by different materials of drinking water pipes	Jumana Al-Mallahi
LCA	C-2	6	PROCIR-D-25-00821	Assessing the Environmental and Economic Potential of Remanufactured and Refurbished Engines in Countries Without Domestic OEM Facilities: A Case Study from Indonesia	Tatbita Titin Suharyanto
LCA	C-3	1	PROCIR-D-25-00777	Prospective Life Cycle Inventory Data Of Hydrogen Production For Aviation	Niklas Engberg
LCA	C-3	2	PROCIR-D-25-00772	Building Sustainable Structures: A Comparative Life Cycle and Carbon Sequestration Assessment of Reinforced Concrete and Engineered Bamboo Beams	Divyansh Paliwal
LCA	C-3	3	PROCIR-D-25-00747	Performance-weighted life cycle assessment for analysis of environmental impacts of solid-state recycling processes for sustainable aluminum	Alexander Koch
LCA	C-3	4	PROCIR-D-25-00702	Comparative Life Cycle Assessment of Different Use-Phase Scenarios for Vanadium Redox Flow Batteries	Semih Severengiz
LCA	C-3	5	PROCIR-D-25-00692	Life cycle assessment of cotton waste recycling – A systematic review	HAO HSIANG HSU
LCA	C-3	6	PROCIR-D-25-00678	Embedding Life Cycle Thinking in a National Research Facility (NRF): Towards a Circular and Sustainable Electron Paramagnetic Resonance (EPR) Infrastructure	Jingyi Li
LCA	C-4	1	PROCIR-D-25-00644	Life Cycle Assessment of Pyrolysis Valorisation for End-of-Life Medium-Desity Fibreboard	Wen Li
LCA	C-4	2	PROCIR-D-25-00262	Bridging the gap between circularity assessment and data governance	Lauren Durivault
LCA	C-4	3	PROCIR-D-25-00356	Life cycle assessment of biosensor for virus production: A case study in sustainable design of biointelligent products	Edgar Antonio Gamero
LCA	C-4	4	PROCIR-D-25-00349	Hotspot analysis of a circular saw blade for cutting nickel-based alloys	Maximilian Voigt
LCA	C-4	5	PROCIR-D-25-00333	Assessing Greenhouse Gas Reduction Potential through Eco-Design of Elevators with Consideration of Regional Characteristics	Satoshi Ihara
LCA	C-4	6	PROCIR-D-25-00329	Environmental Impacts of Lithium-Ion Batteries Refurbishment for Second-life Applications: A Systematic Literature Review	Amos Lee Wei Lun
LCA	C-5	1	PROCIR-D-25-00278	Sustainable Solutions for E-Waste Management: A Comparative Life Cycle Assessment of Traditional and Smart Collection Systems	Pooya Hosseini
LCA	C-5	2	PROCIR-D-25-00276	Case Study on Forecasting Scope 3 Category 1 GHG Emissions in Inverter Manufacturing Using Dynamic Electricity Mix Scenarios	Kan Kobayashi
LCA	C-5	3	PROCIR-D-25-00242	Extending the Life Cycle Assessment Framework: From Impact to Dependency Perspective	Lance Hongwei Huang
LCA	C-5	4	PROCIR-D-25-00190	A Checklist-Based Tool for Evaluating the Reporting Quality of Discrete Event Simulation Models in Manufacturing Life Cycle Assessments	Devarajan Ramanujan
LCA	C-5	5	PROCIR-D-25-00182	Towards robust life cycle assessments: Adapting the Pedigree Matrix for Time Series Data	Johannes Mayer
LCA	C-5	6	PROCIR-D-25-01191	Data Stream Architecture for Scope 3 Hybrid Modelling Using a Product Lifecycle Lens	Okechukwu Okorie
LCA	C-6	1	PROCIR-D-25-00951	LYFE ² : A Lifecycle Analysis Framework for Environment & Economics in Aviation	Jennifer Ramm
LCA	C-6	2	PROCIR-D-25-00908	Methodology for Service-Based Scope 3 Emission Factor Development: A Case Study of Security Services in Singapore	Jek Kee Cheryl Nam
LCA	C-6	3	PROCIR-D-25-00784	Integrating Critical Raw Materials into Life Cycle Assessment using a New Dynamic Material Assessment Tool	Ole Meyer
LCA	C-6	4	PROCIR-D-25-00698	Toward Clearer Impact Attribution: Endogenizing System Losses and Coupled Inputs in Input-Output Based Material Flow and Impact Analysis	Daniel R Cooper

LCA	C-6	5	PROCIR-D-25-00600	Data-Driven Decision-Support Tool for Environmental Performance Evaluation: Integrating Automation	Soufiane El Bechari
LCA	C-6	6	PROCIR-D-25-00334	Decarbonising Industrial Supply Chains: A Strategic Framework for Managing Scope 3 Emissions in Procurement	Chantal Rieddorf
LCA	C-7	1	PROCIR-D-25-00324	A Tensor-based Predictive TEA-LCA Framework for Modular Disassembly and Remanufacturing of Clean Energy Magnets	Albin John
LCA	C-7	2	PROCIR-D-25-00515	Life Cycle Assessment of Rack Servers with Circular Strategies	Ritvik Kumar
LCA	C-7	3	PROCIR-D-25-00879	Multi-source heterogeneous data fusion and real-time anomaly monitoring method for unmanned production lines of complex products	Chengran Jiang
LCA	C-7	4	PROCIR-D-25-00353	Applying Discrete-Event Modelling to Enable Spatio-Temporal Life Cycle Assessment in the Aviation Sector	Antonia Rahn
LCA	C-7	5	PROCIR-D-25-00454	Understanding the Limits of Generic LCI Data: Process-Induced Variability in Machining	Gonsalves Grünert
LCA	C-7	6	PROCIR-D-25-00143	Sustainable low-carbon metallurgy in Zimbabwe: A critical review on the potential of using self-reducing pellets for ironmaking.	Edson Kugara Chiwandika
LCA	C-8	1	PROCIR-D-25-00204	Identification and prioritization of key levers for sustainable mold manufacturing	Helen Baumert
LCA	C-8	2	PROCIR-D-25-00928	Climate Change Impact of Pedal Electric-Assisted Bike: The Cases of Barcelona and Munich	Semih Severengiz
LCA	C-8	3	PROCIR-D-25-00897	A Life Cycle Perspective on Monofacial and Bifacial Photovoltaic Module Sustainability and Environmental Offsets	Massimiliano Marian in Materials Science
LCA	C-8	4	PROCIR-D-25-00766	Circular Footprint Formula: Challenges and Opportunities in Assessing the Circularity of Post-Consumer Recycled Materials for Automotive Panels	Vineet Shah, Master of Engineering
LCA	C-9	1	PROCIR-D-25-00450	Techno-Economic and Environmental Assessment of Industrial-Scale Fired Ammonia Cracking for Hydrogen Transportation	Sebastian Wodak
LCA	C-9	2	PROCIR-D-25-00806	Evaluating environmentally weighted recycling efficiency of a technology: discussion of methodology and application on a case-study	Andrea Margheri
LCA	C-9	3	PROCIR-D-25-00888	Sustainability metrics for the Factory-in-a-Box paradigm: informing early business case	Justyna Rybicka
LCA	C-9	4	PROCIR-D-25-00922	Enhanced Benchmarking Framework for Foundation Industries	Konstantinos Salonitis
LCA	C-9	5	PROCIR-D-25-00811	Foundations for a Simplified Climate Change Assessment for Manufacturing SMEs in Germany	Maria Celia Briones Espinoza
LCA	C-9	6	PROCIR-D-25-00722	Assessing the embodied energy of energy facilities: a life cycle approach for the key construction materials required in transition scenarios	Sandra Bouneau
LCA	C-10	1	PROCIR-D-25-00309	Does Circularity Reduce Climate Impact? A Component-Level Analysis for Electronic Products	Chantal Rieddorf
LCA	C-10	2	PROCIR-D-25-00656	Component-Level Circularity Assessment: A Methodological Contribution for CE Decision Making in the Manufacturing Industry	Carolin Escherich
LCA	C-10	3	PROCIR-D-25-00643	Using AI in Life Cycle Assessment Education: Insights from Higher Education and Guidelines for Responsible Integration	Walid Ijassi
LCA	C-10	4	PROCIR-D-25-00411	Concept for environmentally oriented engineering in composites industry based on LCA	Aljoscha Hieronymus
LCA	C-10	5	PROCIR-D-25-00774	From Data to Impact: Automating Product Carbon Footprint Assessment through Integrated AI-ERP-LCA Systems	Danielle Landi
LCA	C-10	6	PROCIR-D-25-00318	Comparing Large Language Model Methodologies for Life Cycle Inventory Data Extraction	Kira Fischer
Advanced Recycling and Recovery Technologies	D-1	1	PROCIR-D-25-00138	Transforming E-Waste Into Strategic Resources: Techno-Economic Analysis of Gallium and By-products Recovery from LEDs via Bioleaching	Fu Zhao
Advanced Recycling and Recovery Technologies	D-1	2	PROCIR-D-25-00761	Recycling Carbon Fibre Fabrics from Composite Wastes: A Case Study on End-of-Life Bicycle Components	Di He
Advanced Recycling and Recovery Technologies	D-1	3	PROCIR-D-25-00719	Comprehensive analysis of techniques for removing spot welded nickel strips from lithium-ion battery cells	Tom Machiels
Advanced Recycling and Recovery Technologies	D-1	4	PROCIR-D-25-00663	Rethinking Platinum Group Metals (PGMs) Recovery Pathways: A Comparative Life Cycle Assessment	Jingyi Li
Advanced Recycling and Recovery Technologies	D-1	5	PROCIR-D-25-00395	Systematic Optimization of the Induction Based Thermal Demagnetization Process for Rare Earth Magnet Recovery from PM Rotors	Roman Hahn
Advanced Recycling and Recovery Technologies	D-1	6	PROCIR-D-25-00387	Mechanical recycling of PET and PA blended textiles with elastane: Process optimization in pretreatment by improving pellet quality with variable binding agents on a laboratory scale	Sahra Pogrzeba
Disassembly	D-2	1	PROCIR-D-25-00240	Structured Documentation and Evaluation of Manual Disassembly: A Cross-Platform Application for Assessing R-Paths and Automation Potential	Anwar Al Assadi
Disassembly	D-2	2	PROCIR-D-25-00918	Toward Circularity-Driven Product Design Across Varying Disassembly Automation Levels	Lucas Janisch
Disassembly	D-2	3	PROCIR-D-25-00770	Towards Automated Disassembly for Battery Removal of Robot Vacuum Cleaners	Dheeraj Singh
Disassembly	D-2	4	PROCIR-D-25-00695	Disassembly and circularity assessment of power electronics: power converters for residential elevators	Joan Manuel F. Mendoza
Disassembly	D-2	5	PROCIR-D-25-00662	A Regret-Based Scheduling Framework for Human-Robot Cooperative Demanufacturing Systems	Sander Teck
Disassembly	D-2	6	PROCIR-D-25-00618	A Priority-Rule-Based Approach for the Dynamic Control of Reassembly in Matrix-Remanufacturing Systems	Finn Bait
Disassembly	D-3	1	PROCIR-D-25-00436	Scalable Modeling of Destructive and Non-Destructive Disassembly with Extended Petri Nets for Disassembly Process Planning	Finn-Augustin Brunnenkant
Disassembly	D-3	2	PROCIR-D-25-00419	Screw Localization Accuracy in CT-Based Predictions for De-Manufacturing	Niels Griffioen
Disassembly	D-3	3	PROCIR-D-25-00343	Engineering design for disassembly: test of a time-based methodology and the LeanDfD software tool	Claudio Favi
Disassembly	D-3	4	PROCIR-D-25-00337	Evolution of the disassembly map towards a standardized and software-readable format for virtual product disassembly	Claudio Favi
Disassembly	D-3	5	PROCIR-D-25-00279	Projection-Based Augmented Reality to Support Human Intervention in Robotic Disassembly: A Case Study for Bike Batteries	Willem Mahy
Disassembly	D-3	6	PROCIR-D-25-00260	Gentle loosening for non-destructive disassembly of operationally seized threaded fasteners	Richard Blümel
Digital Product Passports for Life Cycle Engineering	D-4	1	PROCIR-D-25-00252	A demonstration workshop for the use of the DPP for SMEs	Timo Köring
Digital Product Passports for Life Cycle Engineering	D-4	2	PROCIR-D-25-00725	Enabling the Concept of an Integrated Product Data Model for Life Cycle Engineering by Digital Product Passports	Kai Lindow
Digital Product Passports for Life Cycle Engineering	D-4	3	PROCIR-D-25-00703	Enhancing Traceability in Sustainable Manufacturing by Linking Digital Product Passports with Digital Process Passports	Ishaan Kaushal
Digital Product Passports for Life Cycle Engineering	D-4	4	PROCIR-D-25-00280	Digital Product Passport as a Digital Twin? Analyzing Conceptual Intersections and Deriving Design Elements	Helena Ebel
Digital Product Passports for Life Cycle Engineering	D-4	5	PROCIR-D-25-00804	Smart-Circularity Assessment for Digital Product Passports in the Textile-Exporting Countries of the Global South	Pratik Ganesh Dake
Digital Product Passports for Life Cycle Engineering	D-4	6	PROCIR-D-25-00642	A Conceptual Model to Assess the Environmental Impacts of Digital Product Passports	René Herbert Reich
Artificial Intelligence for Life Cycle Engineering	D-5	1	PROCIR-D-25-00245	Enhancing Digital Product Passports for the Circular Economy with Generative AI	Monireh Pourjafarian
Artificial Intelligence for Life Cycle Engineering	D-5	2	PROCIR-D-25-00328	Development of ontology based knowledge construction tool with large language model	Takehisa Nishida
Artificial Intelligence for Life Cycle Engineering	D-5	3	PROCIR-D-25-00290	Data-driven decision support and control for adaptive circular production of plastics by injection molding	Aleksandra Naumann
Artificial Intelligence for Life Cycle Engineering	D-5	4	PROCIR-D-25-00285	Case-Based Reasoning and Knowledge Graphs to Support the Pattern-Based Engineering of Resilient and Sustainable Production Networks	Jan Felix Niemeyer
Artificial Intelligence for Life Cycle Engineering	D-5	5	PROCIR-D-25-00272	Knowledge extraction method for failure identification using multimodal generative AI	Takayuki Uchida

Artificial Intelligence for Life Cycle Engineering	D-5	6	PROCIR-D-25-00265	Automating life cycle inventory modelling with large language models	Evangelos Kallitsis
System-Level Modelling and Simulation for Life Cycle Engineering	D-8	1	PROCIR-D-25-00779	Roadmap for Decarbonizing Production in Emission-Intensive Industries: Considering Lean, Digital, Sustainable, and Green Technological Measures	Olivia Bernhard
System-Level Modelling and Simulation for Life Cycle Engineering	D-8	2	PROCIR-D-25-00361	A Hybrid Approach Combining Macroscopic Traffic and Life Cycle Simulations to Evaluate Environmental Loads of Regional Transportation Including Ridesharing	Hiidenori Murata
System-Level Modelling and Simulation for Life Cycle Engineering	D-8	3	PROCIR-D-25-00783	A Conceptual Multi-Level Framework For Designing And Assessing Business Models And Value Chains For The Circular Economy Combining Pattern-based Approaches And Hybrid Simulation	Christopher Thomas Dormeier
System-Level Modelling and Simulation for Life Cycle Engineering	D-8	4	PROCIR-D-25-00386	Simulation-Based Decision Support for Circular Spare Parts Management in the Commercial Vehicle Sector: The Case of High-Voltage Batteries	Marius Hermsen
Absolute Sustainability	D-9	1	PROCIR-D-25-00424	On Ambidexterity of Leadership and Organizational Design in the Context of Relative and Absolute Sustainability	Robert Miehe
Absolute Sustainability	D-9	2	PROCIR-D-25-00302	Aligning Green Certifications with Planetary Boundaries	Sareh Shahrabifarahani
Absolute Sustainability	D-9	3	PROCIR-D-25-00841	Absolute Sustainable Product Engineering (ASPE) - A Methodological Framework for Engineering within Absolute Limits	Kristian König
Absolute Sustainability	D-9	4	PROCIR-D-25-00837	Safe Operating Space (SoS) Allocation and Uncertainties: An Australian Perspective	Sami Kara
Absolute Sustainability	D-9	5	PROCIR-D-25-00822	Towards Absolute Environmental Sustainability: Product Development within Planetary Boundaries	Gonçalo Cardeal
Absolute Sustainability	D-9	6	PROCIR-D-25-00355	Framework for multi-dimensional absolute environmental sustainability and product criticality assessment of emerging battery technologies	Siavash Aghaei
Organizational and Societal Dimensions of Life Cycle Engineering	D-10	1	PROCIR-D-25-00796	Evaluating UK ETS Effects and Life-Cycle Engineering Opportunities for Emissions-Intensive UK Listed Companies	Shoaib Sarfraz
Organizational and Societal Dimensions of Life Cycle Engineering	D-10	2	PROCIR-D-25-00767	Scan your Trash: Exploring Participatory Data Capture to enrich Object Detection Datasets for Post-Consumer Plastic Sorting	Natalie Basedow
Organizational and Societal Dimensions of Life Cycle Engineering	D-10	3	PROCIR-D-25-00727	Exploring Decision Rationalities of Project Managers Steering Sustainable Development	Sandra Naomi Morioka
Organizational and Societal Dimensions of Life Cycle Engineering	D-10	4	PROCIR-D-25-00760	A framework for equitable allocation of internal carbon pricing and GHG emissions to support firm-level and sectoral decarbonisation	Daren Zong Loong Tan
Organizational and Societal Dimensions of Life Cycle Engineering	D-10	5	PROCIR-D-25-00571	Towards a Reference Architecture Model for the Perpetual Innovative Product	Gabriel David Moser